Table of Contents
1. Executive Summary
2. Innovations Overview
2.1: Why innovation is required
2.2: Innovations in composites industry
3. Composites Industry Insights and Unmet Needs Analysis
3.1: Composites manufacturing technologies
3.2: Composite market- materials and applications
3.2.1: Composites market by material
3.2.2: Advanced composites market
3.2.3: Raw materials market
3.3: Value chain analysis
3.4: Growth drivers and challenges
3.4.1: Driving forces for the use of composite materials
3.4.2: Industry challenges in recent years
3.4.2.1: The energy cost squeeze
3.4.2.2: Challenges for glass fiber industry
3.4.2.3: Resin producers are relatively safe
3.4.2.4: Fabricators' challenge
3.5: Unmet needs analysis
3.5.1: Need for low-cost raw materials
3.5.2: Resins and fiber materials with higher strain to failure
3.5.3: Better UV- and chemical-resistant materials
3.5.4: Low-cost manufacturing process for large and small parts
3.5.5: Need for high temperature composite materials
3.5.6: Low shrinkage materials
3.5.7: Low wear and tear composite materials
3.5.8: Damping and noise resistance materials
3.5.9: Optimal resin and additive systems for closed molding operations
3.5.10: Products manufacturability and affordability
3.5.11: Flexible gel coats
3.5.12: Flame-resistant materials
3.5.13: Self-healing material
3.5.14: Manufacturing process with lower processing time
3.5.15: Flexible honeycomb core
3.5.16: Fabric wrinkling
3.5.17: Method of cutting wet prepregs
3.5.18: Need for moisture-resistant honeycomb core
3.5.19: Fast cure epoxy resin
4. Emerging Innovations in Composite Materials
4.1: Innovations in glass fiber
4.2: Innovations in carbon fiber
4.3: Innovations in natural fiber
4.4: Innovations in resins
4.5: Innovations in compounds
4.6: Innovations in core materials
5. Emerging Innovations in Composites Applications
5.1: Emerging innovations in aerospace market
5.2: Emerging innovations in automotive market
5.3: Emerging innovations in wind energy market
5.4: Emerging innovations in construction market
5.5: Emerging innovations in composites manufacturing technologies
6. Future Roadmap for Innovations in Composites Industry
7. Other Recent Launches
7.1: Glass fiber
7.2: Carbon fiber
7.3: Natural fiber
7.4: Resin
7.5: Compounds
7.6: Core materials
List of Figures
Chapter 2.Innovations Overview
Figure 2.1: Six aspects of business values created by innovation
Figure 2.2: Unmet needs and the scope of innovation
Chapter 3.Composites Industry Insights and Unmet Needs Analysis
Figure 3.1: Classification of composite processing techniques
Figure 3.2: Advanced composites market share in global composites industry in 2013
Figure 3.3: Advanced composites market size (Million Pounds) in global composites industry in 2013
Figure 3.4: Advanced composites market distribution ($M) in global composites industry in 2013
Figure 3.5: Advanced composites market size ($M) in global composites industry in 2013
Figure 3.6: Raw material shipment (Million Pounds) in global composites industry in 2013
Figure 3.7: Global composites market breakdown (%) by raw materials used in 2013
Figure 3.8: Raw material shipment ($M) in global composites industry in 2013
Figure 3.9: Global composites market breakdown (%, $M) by raw materials used in 2013
Figure 3.10: Composites industry value chain
Figure 3.11: Flow chart of value chain for the composites industry
Figure 3.12: Dollar ($) and gross profit flow chart through various nodes of the value chain (from raw material to end product)
Figure 3.13: Supply chain of composites industry
Chapter 4.Emerging Innovations in Composite Materials
Figure 4.1: Single-end roving
Figure 4.2: Multi-end roving
Figure 4.3: Chopped strand mat
Figure 4.4: Veil mat
Figure 4.5: Chopped strand
Figure 4.6: Fabrics
Figure 4.7: Woven roving
Figure 4.8: Recent glass fiber product launches towards high strength
Figure 4.9: Recent glass fiber product launches towards high modulus
Figure 4.10: Fiber glass direct roving from Johns Manville
Figure 4.11: 248A and PerforMax 249A short fiber application parts
Figure 4.12: Chopped strand reinforcements
Figure 4.13: Glass fiber products from AGY
Figure 4.14: Type 30™ SE2307 single-end roving from Owens Corning
Figure 4.15: Recently launched glass fiber products by Owens Corning for automotive
Figure 4.16: Recently launched glass fiber products by Owens Corning for wind energy
Figure 4.17: Recently launched glass fiber products by Owens Corning for construction and others
Figure 4.18: Some of the other glass fiber product launches (I)
Figure 4.19: Some of the other glass fiber product launches (II)
Figure 4.20: Some of the other glass fiber product launches for application (I)
Figure 4.21: Some of the other glass fiber product launches for application (II)
Figure 4.22: Different types of carbon fiber forms
Figure 4.23: Typical continuous carbon fiber
Figure 4.24: Typical chopped carbon fiber
Figure 4.25: Typical metal (nickel)-coated carbon fiber
Figure 4.26: Recent carbon fiber product launches directed towards high strength
Figure 4.27: Tensile modulus of a few carbon fiber products launched since last five years
Figure 4.28: Carbon fiber structure
Figure 4.29: C-PLY ™ SPREAD from Chomarat
Figure 4.30: DIALEAD K13916 from Mitsubishi Plastics, Inc.
Figure 4.31: Some of the major carbon fiber product launches in automotive application
Figure 4.32: Some of the major carbon fiber product launches in automotive and aerospace application
Figure 4.33: Future innovations towards improving tensile strength in natural fibers
Figure 4.34: Tensile strength of natural fiber products launched during 2009-2012
Figure 4.35: Future innovations to improve strength-to-stiffness ratio in natural fiber
Figure 4.36: Areas of innovation in natural fibers
Figure 4.37: Recent launches of continuous natural fibers and their properties
Figure 4.38: AmpliTex light fabric properties and their markets
Figure 4.39: Expected increase in usage of natural fibers in pultrusion and filament winding processes in future
Figure 4.40: Natural fiber treatments methods
Figure 4.41: Study of viscosity of recently launched resins suggest more launches in low viscosity resins during last six years
Figure 4.42: Dow VORAFORCETM 5300 epoxy resin from The Dow Chemical Company
Figure 4.43: Beyone™ 1 resin for wind composites applications from DSM
Figure 4.44: Part developed with carbon fiber and epoxy resin
Figure 4.45: Profile and structure
Figure 4.46: EPIKOTE MGS RIMR 145 resin for wind turbine blade application from Momentive Performance Materials Inc
Figure 4.47: Some of the other resin product launches (I)
Figure 4.48: Some of the other resin product launches (II)
Figure 4.49: Some of the resin product launches for applications (I)
Figure 4.50: Some of the resin product launches for applications (II)
Figure 4.51: Short fiber, long fiber, and continuous fiber
Figure 4.52: Classification of thermoplastic composite materials
Figure 4.53: Sheet molding compound from core molding technologies
Figure 4.54: SymTerra sheet molding compounds (SMC) that combine renewable-resource raw materials
Figure 4.55: Hyperion air handler made of SMC from CSP
Figure 4.56: The “Canopy LENS Antenna” uses molded BMC IB-2240 for its frontal enclosure
Figure 4.57: LFT pellets
Figure 4.58: Some of the major compound materials product launches
Figure 4.59: Use of core materials in wind blade
Figure 4.60: Study of strength property for recent product launches in core materials
Figure 4.61: More core material product launches are concentrated in low density area
Figure 4.62: SAER foam from SAERTEX
Figure 4.63: ArmaFORM PET foam from Armacell
Figure 4.64: BALTEK® Banova lightweight panel from 3A Composites
Figure 4.65: ROHACELL®, PMI-based structural foam from Evonik
Figure 4.66: DOW Wind Energy
Figure 4.67: Some other major product launches of core materials (I)
Figure 4.68: Some other major product launches of core materials (II)
Figure 4.69: Some other major product launches of core materials (III)
Figure 4.70: Some other major product launches of core materials (IV)
Figure 4.71: Some other major product launches of core materials (V)
Chapter 5.Emerging Innovations in Composites Applications
Figure 5.1: Forecast of buy material market in global aerospace and defense industry in B lbs. 2013-2025
Figure 5.2: Material dominance in aerospace industry
Figure 5.3: Composites usage in different Boeing models
Figure 5.4: Trends in materials usage
Figure 5.5: Aerospace market need and areas of innovation
Figure 5.6: Boeing’s B787 improvements over B767
Figure 5.7: Aerospace industry expectations from composites
Figure 5.8: Aerospace industry trends
Figure 5.9: Increased usage of carbon composites in primary structures
Figure 5.10: Increasing composites usage in all current and future leading programs
Figure 5.11: Genx CFRP front fan blades and front fan case
Figure 5.12: Current innovations to meet aerospace industry expectations
Figure 5.13: Lockheed martin incorporated CNRP into F35 lightning II wingtip fairings resulting in significant cost and weight reduction
Figure 5.14: Aerospace programs using automated material laying up techniques
Figure 5.15: Composites industry is shifting towards AFP and ATL processes
Figure 5.16: MAG’s Gemini (combing AFP and ATL together)
Figure 5.17: GroFi platform- Multi-Lay-Up approach
Figure 5.18: Increasing focus towards Out-of-Autoclave
Figure 5.19: Boeing’s different aircraft depicting reduced parts count
Figure 5.20: One piece fuselage of Boeing and HondaJet
Figure 5.21: Carbon fiber recycling as the innovation trend towards sustainability
Figure 5.22: Increasing need for recyclability of aircraft materials
Figure 5.23: Boeing’s CFRP recycling
Figure 5.24: Forecast of buy materials market in automotive industry in million pounds and material dominance in automotive industry
Figure 5.25: Automotive industry expectation from composites
Figure 5.26: Manufacturing expectation – low-cost precursor and processes for carbon fiber
Figure 5.27: Industry putting efforts on alternative precursors and improvization in manufacturing process to reach desired level of $5-$6/lbs
Figure 5.28: Manufacturing expectation – improvization of part manufacturing process cycle time
Figure 5.29: Improvization in part manufacturing processes cycle time
Figure 5.30: HP RTM in mass produced vehicles
Figure 5.31: HP RTM process steps in detail
Figure 5.32: Partners of HP RTM process and fabricators using this process
Figure 5.33: Lamborghini – Callaway forged composites
Figure 5.34: Forged composite and RTM costs overview
Figure 5.35: Forged composite production rate improvements
Figure 5.36: Gurit SPRINT CBS
Figure 5.37: Comparison of vacuum bag process and press molding process cycle time
Figure 5.38: Electric vehicle made from Toho Tenax Technology
Figure 5.39: Manufacturing expectation – part consolidation or one piece design
Figure 5.40: Part Consolidation – one piece Monocoque
Figure 5.41: Few examples of one piece design
Figure 5.42: Monolithic design concept, a composites car door
Figure 5.43: Sustainability – recyclability of carbon composites
Figure 5.44: Recyclable CFRP composites in BMW I3
Figure 5.45: BMW’s CFRP recycling technology
Figure 5.46: Sustainability – usage of natural fiber composites
Figure 5.47: Natural fiber composites in BMW I3
Figure 5.48: Cost reduction – inline compounding
Figure 5.49: Inline compounding system, such as D-LFT, D-GMT, and D-SMC
Figure 5.50: Forecast of buy materials market in wind energy industry in M lbs and material dominance in wind energy industry
Figure 5.51: Wind energy industry expectations from composites
Figure 5.52: Manufacturing expectation (wind energy) – increased usage of carbon fiber
Figure 5.53: Increasing demand of weight reduction in longer wind blades is leading to increased usage of carbon fiber
Figure 5.54: Industry focusing on higher MW size turbines and incorporating carbon fiber for reducing blade weight and increasing energy output
Figure 5.55: Manufacturing expectation (wind energy) – monolithic design
Figure 5.56: Monolithic design -- Siemens B75 - world's largest fiberglass component cast in one piece
Figure 5.57: Manufacturing expectation (wind energy) – seamless modular technology
Figure 5.58: Modular design -- blade dynamics using patented seamless modular technology for ETI’s* project of developing world’s largest blades
Figure 5.59: Blade dynamics’ D49 rotor blades for onshore using seamless modular technology
Figure 5.60: Manufacturing expectation (wind energy) – Fibramatic automated lay-up process
Figure 5.61: Automated manufacturing process Gamesa’s Fibramatic automated lay-up for 100% automated infusion wind blade
Figure 5.62: Construction industry expectations from composites
Figure 5.63: Manufacturing expectation (construction industry) – increasing usage of polyurethane urethane composites
Figure 5.64: Increasing usage of polyurethane urethane composites
Figure 5.65: Manufacturing expectation (construction industry) – use of FRP in waterless toilet system
Figure 5.66: Use of FRP in waterless toilet system
Figure 5.67: Sustainability (construction industry) – usage of natural fiber composites
Figure 5.68: Use of natural fiber composites in construction
Figure 5.69: Sustainability (construction industry) – reduce greenhouse gas emission
Figure 5.70: Need to reduce greenhouse gas emission
Figure 5.71: Major emerging trends in composites technologies
Chapter 6.Future Roadmap for Innovations in Composites Industry
Figure 6.1: Innovation megatrends in composites market
Figure 6.2: Megatrend towards achieving light-weighting
Figure 6.3: Future direction towards improving performance
Figure 6.4: Innovations directed towards price reduction
Figure 6.5: Increasing use of eco-friendly materials
Figure 6.6: Emergence of monolithic design
List of Tables
Chapter 2.Innovations Overview
Table 2.1: Key Emerging Innovations in Composite Materials
Chapter 3.Composites Industry Insights and Unmet Needs Analysis
Table 3.1: Global composites shipment by raw material type in 2013 (Source: Lucintel)
Table 3.2: Impact properties of some selected materials (I)
Table 3.3: Impact properties of some selected materials (II)
Table 3.4: Maximum continuous use temperatures for various thermoset and thermoplastics
Chapter 4.Emerging Innovations in Composite Materials
Table 4.1: Lucintel’s rating methodology
Table 4.2: Lucintel’s innovation attractiveness rating of new glass fiber technology from Johns Manville
Table 4.3: Lucintel’s innovation attractiveness rating of ME1510 EP multi-end roving from Owens Corning
Table 4.4: Lucintel’s innovation attractiveness rating fiber glass roving from Owens Corning
Table 4.5: Lucintel’s innovation attractiveness rating of S-3 UHM™ glass fiber from AGY
Table 4.6: Lucintel’s innovation attractiveness rating of type 30™ SE2307 single-end roving from Owens Corning
Table 4.7: Some more emerging innovations in glass fiber in 2014.
Table 4.8: Lucintel’s innovation attractiveness rating of CFRP lasso from Nanjing Loyalty Composite Equipment Manufacture Co. Ltd.
Table 4.9: Lucintel’s innovation attractiveness rating of C-PLY ™ SPREAD from Chomarat
Table 4.10: Lucintel’s innovation attractiveness rating of DIALEAD K13916 from Mitsubishi Plastics, Inc
Table 4.11: Lucintel’s innovation attractiveness rating of Dow VORAFORCETM 5300 Epoxy resin from The Dow Chemical Company
Table 4.12: Lucintel’s innovation attractiveness rating of Beyone™ 1 resin for wind composites applications from DSM
Table 4.13: Lucintel’s innovation attractiveness rating of EPIKOTE™ resin 05475 and EPIKURE™ curing agent 05500 system from Momentive Specialty Chemicals
Table 4.14: Lucintel’s innovation attractiveness rating of Daron 220 resin from DSM
Table 4.15: Lucintel’s innovation attractiveness rating of EPIKOTE MGS RIMR 145 resin for wind turbine blade application from Momentive Performance Materials Inc.
Table 4.16: Some more emerging innovations in resin in 2014
Table 4.17: Lucintel’s innovation attractiveness rating of sheet molding compound from Core Molding Technologies
Table 4.18: Lucintel’s innovation attractiveness rating of SymTerra® composites from Premix
Table 4.19: Lucintel’s innovation attractiveness rating of Hyperion air handler made of SMC from CSP
Table 4.20: Lucintel’s innovation attractiveness rating of canopy LENS antenna molded with BMC IB-2240
Table 4.21: Lucintel’s innovation attractiveness rating of a non-halogenated FR LFT-PP compound ECO-FORTE(TM) from RESIN (Products & Technology) B.V
Table 4.22: Some More Emerging Innovations in Compound in 2014
Table 4.23: Lucintel’s Innovation Attractiveness Rating of SAER Foam from SAERTEX
Table 4.24: Lucintel’s Innovation Attractiveness Rating of ArmaFORM PET Foam from Armacell
Table 4.25: Lucintel’s Innovation Attractiveness Rating of BALTEK® Banova Lightweight Panel from 3A Composites
Table 4.26: Lucintel’s Innovation Attractiveness Rating of ROHACELL®, PMI-Based Structural Foam from Evonik
Table 4.28: Lucintel’s Innovation Attractiveness Rating of DOW COMPAXX™ 900 Foam Core System from Dow
Chapter 5.Emerging Innovations in Composites Applications
Table 5.1: Some emerging innovations in aerospace & defense in 2014
Table 5.2: Increasing usage of natural fiber composites applications
Table 5.3: Some emerging innovations in automotive in 2014
Table 5.4: Some emerging innovations in wind energy in 2014
Table 5.5: Some emerging innovations in construction in 2014
Table 5.6: Some emerging innovations in other industry in 2014
Table 5.7: Some emerging technological innovations in 2014